Home
Class 11
MATHS
lim(x->0)(x(5^x-3^x))/(cos2x-cos4x)...

`lim_(x->0)(x(5^x-3^x))/(cos2x-cos4x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

lim_(x to 0) (cos5x-cos7x)/(cosx-cos5x)

lim_(x-gt0)(cos2x-cos3x)/(cos4x-1)

lim_(x->0)x^3cos(2/x) =

Lim_(xrarr0)(cos2x-cos4x)/(cos3x-cos5x)= (A) (3)/(4) (B) -(3)/(4) (C) (4)/(3) (D) -(4)/(3)

lim_(x rarr0)(cos7x-cos9x)/(cos x-cos5x)

lim_(x->0) (1-cos x cos 2x cos 3x)/ (sin^2 2x) is equal to a) 3/4 b) 7/4 c) 7/2 d) -3/4

lim_(x->0) (1-cos x cos 2x cos 3x)/ (sin^2 2x) is equal to a) 3/4 b) 7/4 c) 7/2 d) -3/4

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :