Home
Class 12
MATHS
If y=(ax^2)/((x-a)(x-b)(x-c))+(bx)/((x-b...

If `y=(ax^2)/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+c/(x-c)+1` then `(y prime)/y=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= (ax^(2))/((x-a)(x-b) (x-c)) + (bx)/((x-b) (x-c))+ (c )/((x-c)) + 1 then prove that (y')/(y)= (1)/(x) [(a)/(a-x) + (b)/(b-x) + (c)/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 find (dy)/(dx)

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then prove that (y')/(y)=(1)/(x)[(a)/(a-x)+(b)/(b-x)+(c)/(c-x)]

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/( (x-b)(x-c))+(c )/(x-c) +1 , prove that (dy)/(dx) =(y)/(x) [(a)/( a-x)+(b)/(b-x)+(c )/(c-x)]

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .