Home
Class 11
MATHS
If I is the incenter of a triangle ABC, ...

If `I` is the incenter of a triangle ABC, then the ratio `I A : I B : I C` is equal to `cos e c A/2: cos e c B/2: cos e c C/2` `sinA/2:sinB/2:sinC/2` `secA/2:secB/2:secC/2` none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if 2a cos ((B-C)/(2))=b+c , then secA is equal to :

In triangle ABC , prove that (1) a=b cos C+c cos B (2) b=a cos C+c cos A .

If A,B, C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cos C+i sin C)

If A+B+C= pi/2 , show that : cos^2 A + cos^2 B + cos^2 C = 2 + 2 sinA sinB sinC .

If A B C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cosC+i sinC) =

Statement-1: In any !ABC , a cos A + b cos B + c cos C le s Statement-2 : In any !ABC,sinA/2sinB/2sinC/2le1/8

If cos A+cos B+2cos C=2, then the sides of triangle ABC are in

If A+B+C=pi then prove cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC

In a triangle Delta ABC , prove the following : 2 abc cos.(A)/(2) cos.(B)/(2) cos.(C )/(2) = (a+b+c)Delta