Home
Class 14
MATHS
I=int (sec^2x)/(tanxsqrt(tan^2x-1)) dx=...

`I=int (sec^2x)/(tanxsqrt(tan^2x-1)) dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sec^(2)x)/(sqrt(1-tan^(2)x))dx=?

int(sec^2x)/(1+tan x)dx

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/((1+tan x)(2+tan x))dx

int(sec^(2)x)/(sqrt(1+tan x))dx

Evaluate: (i) int(sec^2x)/(sqrt(16+tan^2x))\ dx (ii) int1/(x\ sqrt((logx)^2-5))\ dx

Integrate : int(sec^(2)x)/(sqrt(1+tan x))dx

int(sec^(2)x)/(log(tan x)^(tan x)dx)

int (sec^(2) x)/( tan^(2) x - 1) dx is