Home
Class 12
MATHS
if the ratio of the roots of the quadrat...

if the ratio of the roots of the quadratic equation `px^2 + qx + q = 0` be `m:n,` then show that `sqrt(m/n)+sqrt(n/m)+sqrt(q/p)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the ratio of the roots of the quadratic equation x^(2)-px+q=0 be m:n, then prove that p^(2)mn=q(m+n)^(2) .

If the ratio of the roots of the quadratic equation lx^(2)+nx+n=0 be p:q, then prove that sqrt((p)/(q))+sqrt((q)/(p))+sqrt((n)/(l))=0 .

If the roots of the quadratic equation ax^2+cx+c=0 are in the ratio p:q . Then show that sqrt(p/q)+sqrt(q/p)+sqrt(c/a)=0

If the ratio of the roots of the quadratic equation ax^(2)+bx+c=0 be m:n, then prove that ((m+n)^2)/(mn)=(b^(2))/(ac)

If alphaandbeta be the roots of the quadratic equation px^(2)-qx+q=0 , then show that sqrt((alpha)/(beta))+sqrt((beta)/(alpha))-sqrt((q)/(p))=0 .

If the roots of the quadratic equation ax^2 + cx + c = 0 are in the ratio p :q show that sqrt(p/q)+sqrt(q/p)+sqrt(c/a)= 0 , where a, c are real numbers, such that a gt 0

If the roots of the quadratic equation ax^(2) + cx + c = 0 are in the ratio P : q then show that sqrt (p/q) + sqrt (q/p) + sqrt (c/a) = 0

If p and q are the roots of the equation lx^2 + nx + n = 0 , show that sqrt(p/q) + sqrt(q/p)+ sqrt(n/l) = 0 .

If the roots of the equation ax^2+bx+c=0 be in the ratio m:n, prove that sqrt(m/n)+sqrt(n/m)+b/sqrt(ac)=0

If the roots of the equation ax^2+bx+c=0 be in the ratio m:n, prove that sqrt(m/n)+sqrt(n/m)+b/sqrt(ac)=0