Home
Class 11
MATHS
If s inalphas inbeta-cosalphacosbeta+1=0...

If `s inalphas inbeta-cosalphacosbeta+1=0,` then prove that `1+cotalphatanbeta=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 0!=1

Prove that 0!=1

Prove that (1+x) 0

If sinAsinB-cosAcosB+1=0 then prove that 1+cotAtanB=0

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

Prove that : cos^(-1)((cosalpha+cosbeta)/(1+cosalphacosbeta))=2\ tan^(-1)(tanalpha/2tanbeta/2)

If1+ sin^@0 = 3sino coso , then prove that tane = 1 or|-

(1+cosalphacosbeta)^2-(cosalpha+cosbeta)^2=