Home
Class 10
MATHS
If zeros of the polynomial f(x)=x^3-3p x...

If zeros of the polynomial `f(x)=x^3-3p x^2+q x-r` are in A.P., then `2p^3=p q-r` (b) `2p^3=p q+r` `p^3=p q-r` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If zeros of the polynomial f(x)=x^3-3p x^2+q x-r are in A.P., then (a) 2p^3=p q-r (b) 2p^3=p q+r (c) p^3=p q-r (d) None of these

Find the condition that the zeros of the polynomial f(x)=x^3+3p x^2+3q x+r may be in A.P.

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^3-p x^2+q x-r , then 1/(alphabeta)+1/(betagamma)+1/(gammaalpha)= (a) r/p (b) p/r (c) -p/r (d) -r/p

If P,Q,R are in A.P then Q-P=…..

If p,q and r are in AP,then prove that (p+2q-r)(2q+r-p)(r+p-q)=4pqr

If p, q, r are in A.P the p^(2) (q + r), q^(2) (r + p), r^(2) (p+q) are in

If p,q,r are in A.P the p^(2)(q+r),q^(2)(r+p),r^(2)(p+q) are in

If the roots of the equation (q-r)x^(2)+(r-p)x+p-q=0 are equal, then show that p, q and r are in A.P.