Home
Class 12
MATHS
if |veca|=4, |vecb|=2 and the angle betw...

if` |veca|=4, |vecb|=2` and the angle between `veca and vecb` is ` pi/6` then `(vecaxxvecb)^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca|=4,|vecb|=2 and angle between veca and vecb is pi/6 then (vecaxxvecb)^2 is (A) 48 (B) (veca)^2 (C) 16 (D) 32

If |veca|=4,|vecb|=2 and angle between veca and vecb is pi/6 then (vecaxxvecb)^2 is (A) 48 (B) (veca)^2 (C) 16 (D) 32

If |veca*vecb|=|vecaxxvecb| ,then angle between veca and vecb is :

If |veca*vecb|=|vecaxxvecb| , then the angle between veca and vecb is :

If |veca| =2 , vecb =2 hati - hatj -3hatk and the angel between veca and vecb is (pi)/(4) then veca.vecb is equal to

If |veca*vecb|=sqrt3|vecaxxvecb| ,then angle between veca and vecb is :

If vecA*vecB=|vecAxxvecB| then the angle between vecA and vecB is

If 2veca*vecb = |veca| * |vecb| then the angle between veca & vecb is

If vecA*vecB=|vecAxxvecB| . Then angle between vecA and vecB is