Home
Class 12
MATHS
lim(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2...

`lim_(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+.....+(1)/(n)] `

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_ (n rarr oo) ((n) / (n ^ (2) +1) + (n) / (n ^ (2) +2) + (n) / (n ^ (2) +3) +. .. (n) / (n ^ (2) + n))

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)