Home
Class 11
MATHS
" If "f(x)=sin log x," then the value of...

" If "f(x)=sin log x," then the value of "f(xy)+f((x)/(y))-2f(x)*cos log y" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log(cosx), then the value of f''(x) is-

IF f(x)= log(tan(x/2)) , then the value of f'(x) is

if f(x) = cos (log x) then the value of f(x) f(y)-(1//2) [f(x//y) + f(xy) ] is

If f(x)=log("tan"(x)/(2)) , then the value of f'(x) is -

If f (x) = cos (log_e x) , find the value of : f(x) f(y)-1/2[f(x/y)+f(xy)] .

If f(x)=sin(logx) , then f(xy)+f(x//y)-2f(x)cos (logy)=

The value of int (f'(x))/(f(x)log{f(x)})dx is equal to -

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=