Home
Class 12
MATHS
" The value of integral "int e^(x)((1)/(...

" The value of integral "int e^(x)((1)/(sqrt(1+x^(2)))-(1-2x^(2))/(sqrt((1+x^(2))^(5))))dx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dx is equal to (a)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^3)))+c (b)e^x(1/(sqrt(1+x^2))-x/(sqrt((1+x^2)^3)))+c (c)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^5)))+c (d)none of these

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dx is equal to (a)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^3)))+c (b)e^x(1/(sqrt(1+x^2))-x/(sqrt((1+x^2)^3)))+c (c)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^5)))+c (d)none of these

int(e^(2x))/(sqrt(1-e^(2x)))dx

Integrate: int(dx)/((1+x)sqrt(1-x^2))

Integrate int(e^x-1/(sqrt(1-x^2)))dx

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int_(-1)^(1)(x)/(sqrt(1-x^(2)))*sin^(-1)(2x sqrt(1-x^(2)))dx is equal to