Home
Class 12
MATHS
If x^2-x+1=0 then the value of sum[n=1]^...

If `x^2-x+1=0` then the value of `sum_[n=1]^[5][x^n+1/x^n]^2` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)

If barx represents the mean of n observations x_1, x_2,…….,x_n , then value of sum_(i=1)^n (x_1-barx) is :

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

For x in Rwith|x|<1, the value of sum_(n=0)^(oo)(1+n)x^(n) is

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

If x^(2) - x+ 1 =0, sum_(n=1)^(5) (x^(n) +(1)/(x^(n))) equals -

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n-1)2f(r/(2n))