Home
Class 11
MATHS
The minimum value of the expression sin...

The minimum value of the expression `sin alpha + sin beta+ sin gamma`, where `alpha,beta,gamma` are real numbers satisfying `alpha+beta+gamma=pi` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lfsin alpha + sin beta + sin gamma = 0 = cos alpha + cos beta + cos gamma then sum cos (alpha-beta) =

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in

If sin alpha+sin beta+sin gamma=0=cos alpha+cos beta+cos gamma, then the value of sin^(2)alpha+sin^(2)beta+sin^(2)gamma, is

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

Let sin^(-1)alpha+sin^(-1)beta+sin^(-1)gamma=pi and alpha, beta, gamma are non zero real numbers such that (alpha+beta+gamma)(alpha+beta-gamma)=3alphabeta then value of gamma

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is