Home
Class 11
MATHS
Show that tan1^0tan2^0tan89^0=1...

Show that `tan1^0tan2^0tan89^0=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan10^0tan15^0tan75^0tan80^0=1 tan1^0tan2^0tan3^0tan89^0=1 cos1^0cos2^0cos3^0cos180^0=0

Prove that: tan6^(0)tan42^(0)tan66^(@)tan78^(@)=1

tan 1^@ tan2^@...tan 89^@=

Prove that : tan1^(@)tan11^(@)tan21^(@)tan69^(@)tan79^(@)tan89^(@)=1

value of tan6^0tan42^0tan66^0tan78^0 is equal to - a) 1 b) 2 c) 1/4 d) 1/8

The value of tan1^(0)tan2^(0)tan3^(@)tan89^(@) is 0b.1 c.1/2d .not defined

If tan theta+1/(tan theta)=2 , then show that tan^(2)theta+1/(tan^(2)theta)= 0

Prove that (1+tan1^(0))(1+tan2^(0))......(1+tan45^(@))=2^(23)

Show that tan{(2n+1)pi+theta}+tan{(2n+1)pi-theta}=0

Show that: int_0^1 tan^-1x/xdx=1/2int_0^(pi/2) ycosecy dy