Home
Class 11
MATHS
If A,B,C are angles of a triangle, then ...

If A,B,C are angles of a triangle, then `2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA` is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

Text Solution

AI Generated Solution

To solve the problem, we need to simplify the expression \(2\sin\left(\frac{A}{2}\right)\csc\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right) - \sin A \cot\left(\frac{B}{2}\right) - \cos A\). ### Step 1: Rewrite the expression The given expression is: \[ E = 2\sin\left(\frac{A}{2}\right)\csc\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right) - \sin A \cot\left(\frac{B}{2}\right) - \cos A \] We know that \(\csc\left(\frac{B}{2}\right) = \frac{1}{\sin\left(\frac{B}{2}\right)}\) and \(\cot\left(\frac{B}{2}\right) = \frac{\cos\left(\frac{B}{2}\right)}{\sin\left(\frac{B}{2}\right)}\). ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE|Exercise Solved Examples And Exercises|482 Videos

Similar Questions

Explore conceptually related problems

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If A ,B, C are the angles of a triangle , then : tan""(A)/(2) * tan""(B+C)/(2) +cos""(A+B)/(2) *csc""(C)/(2)=

If sides a,b,c of Delta ABC are in A.P., then : sin (A/2) cdot sin (C/2)/(sin (B/2) =

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(4) , prove that A=B=C=D= pi//2

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

In Delta ABC, if a,b,c are in A.P.then (2sin((A)/(2))sin((C)/(2)))/(sin((B)/(2)))=

CENGAGE-TRIGONOMETRIC FUNCTIONS-Solved Examples And Exercises
  1. If 0<alpha<beta<gamma<pi 2,="" then="" prove="" that="" tanalpha<(sina...

    Text Solution

    |

  2. Given b=2,c=sqrt(3),/A=30^0 , then inradius of A B C is (sqrt(3)-1)/2...

    Text Solution

    |

  3. If A,B,C are angles of a triangle, then 2sin(A/2)cosec (B/2)sin(C/2)-s...

    Text Solution

    |

  4. Solve cos^(50)x-sin^(50)x=1

    Text Solution

    |

  5. sqrt((1-sintheta)/(1+sintheta))={sectheta-tantheta , if -pi/2ltthetalt...

    Text Solution

    |

  6. If two sides of a triangle are roots of the equation x^2-7x+8=0 and th...

    Text Solution

    |

  7. Prove that: (1+sec2theta)(1+sec4theta)(1+sec8theta)(1+sec2^ntheta)=t a...

    Text Solution

    |

  8. If 3sinx+4cosa x=7 has at least one solution, then find the possible v...

    Text Solution

    |

  9. Prove that (cos(90^0+theta)sec(-theta)"tan"(180^0-theta))/(sec(360^0-t...

    Text Solution

    |

  10. A sector O A B O of central angle theta is constructed in a circle wit...

    Text Solution

    |

  11. Prove that: (2cos2^ntheta+1)/(2costheta+1)=(2costheta-1)(2cos2theta-1)...

    Text Solution

    |

  12. Find the number of solution of sin^2xcos^2x=1+cos^2xsin^4x in the inte...

    Text Solution

    |

  13. Prove that sin(-420^0)(c0s390^0)+cos(-660^0)(sin330^0)=-1

    Text Solution

    |

  14. If R1 is the circumradius of the pedal triangle of a given triangle A ...

    Text Solution

    |

  15. If x=sin(theta+(7pi)/(12))+sin(theta+pi/(12))+sin(theta+(3pi)/(12))dot...

    Text Solution

    |

  16. In any triangle, the minimum value of r1r2r3//r^3 is equal to 1 (b) ...

    Text Solution

    |

  17. Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x...

    Text Solution

    |

  18. Which of the following is the greates? cos e c1 (b) cos e c2 cos e c...

    Text Solution

    |

  19. If tan(pi/4+y/2)=tan^3(pi/4+x/2)dot Prove that (siny)/(sinx)=(3+sin...

    Text Solution

    |

  20. Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0...

    Text Solution

    |