Home
Class 12
MATHS
Evaluate int(pi/6)^(pi/3)(dx)/(1+sqrt(t...

Evaluate `int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}}, \] we can use a substitution to simplify the integral. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(pi//6)^(pi//3) (d x )/(1+sqrt(tan x))

Using the properties of definite integral Evaluate : int_(pi/6)^(pi/3) 1/(1 + sqrttanx) dx

int_(pi/12)^(pi/2)(dx)/(1+sqrt(cotx))

Evaluate int_(pi//6)^(pi//3)(dx)/(1+tan^(n)x)

Evaluate :int_((pi)/(6))^(3)(dx)/(1+sqrt(cot x))

Evaluate :int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))

Evaluate: int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tan x))

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) equal to ?

I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) - I_(2) equal to ?