Home
Class 11
MATHS
Prove that: (2cos2^ntheta+1)/(2costheta+...

Prove that: `(2cos2^ntheta+1)/(2costheta+1)=(2costheta-1)(2cos2theta-1)(2cos2^2theta-1)(2cos2^(n-1)theta-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (2cos2 theta+1)/(2cos theta+1)=(2cos theta-1)(2cos2 theta-1)(2cos2^(2)theta-1)...(2cos2^(n-1)theta-1)

Prove that: (2cos2^(n)theta+1)/(2cos theta+1)=(2cos theta-1)(2cos2 theta-1)(2cos2^(2)theta-1)...(2cos2^(n-1)theta-1)

The value (2cos theta-1)(2cos2 theta-1)(2cos4 theta-1)(2cos8 theta-1)=

For a positive integer n, let f_(n)(theta)=(2cos theta+1)(2cos theta-1)(2cos2 theta-1)(2cos(2^(2))theta-1)...(2cos(2^(n-1))theta-1) Which one of the following hold(s) good?

1+cos theta=2cos^(2)theta

Prove that (cos ec theta)/(cos ec theta-1)+(cos ec theta)/(cos ec theta+1)=2sec^(2)theta

consider f_(n)(theta)=(2cos theta-1)(2cos2 theta-1)(2cos(2^(2)theta)-1)....(2cos(2^(n)theta)-1) the value of f_(n)(theta) is equal to

Prove that ((1+cos theta)/(cos theta))((1-cos theta)/(cos theta))cosec^(2)theta=sec^(2)theta

Prove that: cos^2theta(1+tan^2theta)=1 .

int(costheta-cos2theta)/(1-cos theta)d theta=