Home
Class 11
MATHS
tan^2 alpha+2tan alpha.tan2beta=tan^2 be...

`tan^2 alpha+2tan alpha.tan2beta=tan^2 beta+2tan beta.tan2 alpha,` if (A) `tan^2 alpha+2tan alpha.tan2beta=0` (B) `tan alpha+tan beta=0` (C) `tan^2 beta+2tanbeta,tan2 alpha=1` (D) `tan alpha=tan beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(If)alpha+2tan alpha*tan2 beta=tan^(2)beta+2tan beta*tan2 alpha

If tan^(2) alpha+ 2tan alpha tan 2 beta= tan^(2) beta+ 2 tan beta tan 2 alpha, show that tan beta=+- tan alpha .

(1+tan alpha tan beta)^(2) + (tan alpha -tan beta)^(2) =

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

(1+tan alpha tan beta)^(2)+(tan alpha-tan beta)^(2)=

If 2tan alpha=3tan beta then tan(alpha-beta)=

(tan alpha + tan beta )/( tan (alpha + beta ))+(tan alpha - tan beta )/(tan (alpha - beta )) =

If tan beta =(n tan alpha )/(1+(1-n) tan^(2) alpha ) , then tan(alpha-beta)=

(1+ tan alpha tan beta)^(2) + (tan beta - tan beta)^(2)=