Home
Class 12
MATHS
If lim(x->0) f(x) exists and is equal to...

If `lim_(x->0) f(x)` exists and is equal to p, then find p and q where, `f(x) = {(sinx+cosx)^(cosec x),-pi/2 < x < 0 (e^(1/x)+e^(2/x)+e^(3/x))/(pe^(-2+1/x)+qe^(-1+3/x)), 0 < x < pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)= sinx + cosx for 0 < x < pi/2

Evaluate : lim_(x to 0) (1+sinx)^(2 cosec x)

For what values of p does the Lim_(x to 1) f(x) exist , where f is defined by the rule f(x) = {:{(2px+3," if " x lt 1 ),(1 - px^(2)," if "x gt 1):}

Find the points of discontinuity of the function f, where f(x)={:{(sinx,0lexlepi/4),(cosx,pi/4lt x lt pi/2):}

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

Evaluate lim_(x to (pi)/(2))(1+sinx)^(2"cosec x")

Evaluate the limits lim_(x to 0) (1+sinx)^(2 cosec x)