Home
Class 12
MATHS
If a^2+b^2=23 a b , then prove that l...

If `a^2+b^2=23 a b ,` then prove that `log((a+b))/5=1/2(loga+logb)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^2+b^2=23ab ,then prove that log((a+b)/5)=1/2(log a+log b)

If a^(2)+b^(2)=23ab , then prove that log(a+b)/5=1/2(loga+logb)

If a^2+b^2=18ab ,then prove that log((a-b)/4)=1/2(loga+logb)

If a^(2)+b^(2)=23ab, then prove that (log((a+b)))/(5)=(1)/(2)(log a+log b)

If a^(2)+b^(2)=23ab, then prove that: (log(a+b))/(5)=(1)/(2)(log a+log b)

If a^(2)+b^(2)=23ab prove that log""(a+b)/5=1/2(loga+logb)

If 4a^4+9b^4=37a^2b^2 ,then prove that log(2a^2+3b^2)=loga+logb+log7

Prove that (log_ab x)/(log_a x)=1+log_x b

If a^2+b^2-7ab=0 ,prove that (loga+logb)=2log((a+b)/3)

If a^(2) + b^(2) = 23ab , show that : "log" (a+b)/(5) = (1)/(2) (log a + log b) .