Home
Class 12
MATHS
1+x+1/(2!)x^2+...+1/((2n)!)x^(2n)=0...

`1+x+1/(2!)x^2+...+1/((2n)!)x^(2n)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n ge 2 , and (1 + x + x^(2))^(n) = a_(0) + a_(1)x + a_(2)x^(2) + .. . +a_(2n) x^(2n) , then a_(0) - 2a_(1)+ 3a_(2) + ... + (2n + 1)a_(n) = ______

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)^(2)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+.....+(C_(n)^(2))/(n+1)=((2n+1)!)/({(n+1)!}^(2))

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+.....+C__(n-1)C_(n)=((2n)!)/((n+1)!(n-1)!)

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n)x^(n) show that, C_(0)-2^(2)*C_(1)+3^(2)*C_(2)-...+(-1)^(n)*(n+1)^(2)*C_(n)=0 (n gt 2)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0).C_(n)+C_(1).C_(n-1)+C_(2).C_(n-2)+....+C_(n).C_(0)=((2n)!)/((n!)^(2))

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+.....+a_(2n)x^(2n)" prove that",a_(0)+a_(2)+a_(4)+.......a_(2n)=(1)/(2)(3^(n)+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)