Home
Class 12
MATHS
If f:(3,4)rarr (0,1) defined by f(x)=x-[...

If `f:(3,4)rarr (0,1)` defined by `f(x)=x-[x]` where [x] denotes the greatest integer function then f (x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f:(2,3)->(0,1) defined by f(x)=x-[x] ,where [dot] represents the greatest integer function.

If f:Irarr I be defined by f(x)=[x+1] ,where [.] denotes the greatest integer function then f(x) is equal to

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is