Home
Class 11
MATHS
The smallest positive x satisfying the e...

The smallest positive `x` satisfying the equation `(log)_(cosx)sinx+(log)_(sinx)cosx=2` is `pi/2` (b) `pi/3` (c) `pi/4` (d) `pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive value of x (in radians) satisfying the equation (log)_(cos x)((sqrt(3))/(2)sin x)=2-(log)_(sec x)(tan x) is (a) (pi)/(12) (b) (pi)/(6)(cc)(pi)/(4) (d) (pi)/(3)

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

Find the derivative with respect to x of ((log)_(cosx)sinx)((log)_(sinx)cosx)^(-1)+sin^(-1)((2x)/(1+x^2)) at x=pi/4 .

Find the solutions of the equation , log_(sqrt2sinx)(1+cosx)=2 in the interval x in[0,2pi].

Find the range of sinx satisfying log _(" cosx") sinx ge 2 .

Find intcos2x*log((cosx+sinx)/(cosx-sinx))dx

Find the number of solution of log_(1/2) |sinx| = 2 - log_(1/2) |cosx|, x in [0, 2pi]

(sinx-cosx)^((sinx-cosx)),(pi)/(4) ltx lt (3pi)/(4)