Home
Class 11
MATHS
The expression (tan^4x+2tan^2x+1)cos^2x ...

The expression `(tan^4x+2tan^2x+1)cos^2x ,w h e nx=pi/(12),` can be equal to (a)`4(2-sqrt(3))` (b) `4(sqrt(2)+1)` (c)`16cos^2pi/(12)` (d) `16sin^2pi/(12)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For x=(pi)/(12) , the value of the expression (tan^(4)x+2tan^(2)x+1)cos^(2)x is equal to

The expression tan.(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x) equals

The minimum value of the function f(x)=3tan x+4cot x where x in(0,(pi)/(2)) is (A) 7 (B) 2sqrt(12) (C) 6sqrt(2) (D) 12

If 4sin^(4)x+cos^(4)x=1, then x is equal to (n in Z)( a)n pi( b ) pi pi+-sin^(-1)sqrt((2)/(5))(c)(2n pi)/(3) (d) 2n pi+-(pi)/(4)

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

Prove that :cos((pi)/(12))-sin((pi)/(12))=(1)/(sqrt(2))

if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))= (a) 0 (b) pi/4 (c) pi/6 (d) pi/2

If tan^(-1)(a+x)/a+tan^(-1)(a-x)/a=pi/6,t h e nx^2= 2sqrt(3)a (b) sqrt(3)a (c) 2sqrt(3)a^2 (d) none of these

(cos pi) / (12) - (sin pi) / (12) = (1) / (sqrt (2))