Home
Class 11
MATHS
Let fn(theta)=(cos(theta/2)+cos2theta+co...

Let `f_n(theta)=(cos(theta/2)+cos2theta+cos((7theta)/2)+....+cos(3n-2)(theta/2))/(sin(theta/2)+sin2theta+sin((7theta)/2)+....+sin(3n-2)(theta/2))` then (a)`f_3((3pi)/(16))=sqrt(2)-1` (b) `f_5(pi/(28))=sqrt(2)+1` (c)`f_7(pi/(60))=(2+sqrt(3))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f_(n)(theta)=((cos theta)/(2)+cos2 theta+(cos(7 theta))/(2)+...+cos(3n-2)((theta)/(2 ))/((sin theta)/(2)+sin2 theta+(sin(7 theta))/(2)+...+sin(3n-2)((theta)/(2))) then f_ (3)((3 pi)/(16))

(cos3 theta+2cos5 theta+cos7 theta)/(cos theta+2cos3 theta+cos5 theta)=cos2 theta-sin2 theta tan3 theta

2cos theta-cos3 theta-cos5 theta-16cos^(3)theta sin^(2)theta=

2cos theta-cos3 theta-cos5 theta-16cos^(3)theta sin^(2)theta=

If theta=(pi)/(7), prove that cos theta cos2 theta cos3 theta=(1)/(2^(3))

int_(pi//4) ^(pi//2) (cos theta)/((cos (theta/2) + sin (theta/2))^(3))d theta=

The value of (2(sin2 theta+2cos^(2)theta-1))/(cos theta-sin theta-cos3 theta+sin3 theta)=

If sqrt(3)sin theta=cos theta, find the value of (3cos^(2)theta+2cos theta)/(3cos theta+2)

If (sin theta+cos theta)/(sin theta-cos theta)=(5)/(3) evaluate (7tan theta+2)/(2tan theta+7)

2cos((pi)/(2)-theta)+3sin((pi)/(2)+theta)-(3sin theta+2cos theta)=