Home
Class 12
MATHS
" (e) "a^(3)+(3)/(2)a^(2)+(3)/(4)a+(1)/(...

" (e) "a^(3)+(3)/(2)a^(2)+(3)/(4)a+(1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a)/(b)=(1)/(3),backslash(b)/(c)=2,backslash(c)/(d)=(1)/(2),backslash(d)/(e)=3 and (e)/(f)=(1)/(4), then what is the value of (abc)/(def)?(1)/(4) (b) (3)/(4)(c)(3)/(8)(d)(27)/(4) (e) (27)/(8)

Add the following : (a) (2)/(8)+(3)/(8) , (e) (1)/(2)+(1)/(3)

7(1)/(3)-:(2)/(3)" of "2(1)/(5)+1(3)/(8)-:2(3)/(4)-1(1)/(2)

7(1)/(3)-:(2)/(3)" of "2(1)/(5)+1(3)/(8)-:2(3)/(4)-1(1)/(2)

((1)/(216))^(-2/3)-:((1)/(27))^(-4/3)=? a.(3)/(4)b*(2)/(3) c.(4)/(9)d.(1)/(8)

(7)/(8)+(3)/(4)((1)/(2))(2)/(3)-(1)/(3))

[int((x+x^(3))^(1/3))/(x^(4))dx" is equal to "],[[" (1) "(3)/(8)((1)/(x^(2))-1)^(4/3)+c," (2) "-(3)/(8)[(1+(1)/(x^(2)))^(4/3)]+c],[" (3) "(1)/(8)(1+(1)/(x^(2)))^(4/3)+c," (4) "(1)/(8)((1)/(x^(2))-1)^(4/3)+c]]

If a-(1)/(2a)=3 , then the value of (a^(2)+(1)/(4a^(2)))(a^(3)-(1)/(8a^(3))) is

2(4)/(5)-1(3)/(8)+3(1)/(2)=?

The sum of the series 1/(2!)-1/(3!)+1/(4!)-... upto infinity is (1) e^(-2) (2) e^(-1) (3) e^(-1//2) (4) e^(1//2)