Home
Class 11
MATHS
The expression cos^2(alpha+beta)+cos^2(a...

The expression `cos^2(alpha+beta)+cos^2(alpha-beta)-cos2alpha.cos2beta,` is (a)independent of `alpha` (b) independent of `beta` (c)independent of `alphaa n dbeta` (d)dependent on `alphaa n dbeta`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression cos^(2)(alpha+beta)+cos^(2)(alpha-beta)-cos2 alpha cos2 beta is

If 3sin beta=sin(2 alpha+beta) then tan(alpha+beta)-2tan alpha is (a)independent of alpha (bindependent of beta (c)dependent of both alpha and beta( d)independent of both alpha and beta

The expression (sin(alpha+theta)-sin(alpha-theta))/(cos(beta-theta)-cos(beta+theta)) is independent of alpha b.independent of beta c. independent of theta d .independent of alpha and beta

If 2cos beta=co(2 alpha+beta) then 3tan(alpha-beta)+cos alpha is independent of

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

If 2cos beta=cos(2 alpha+beta) then 3tan(alpha+beta)+cot alpha is independent of -

(cos^2alpha-cos^2beta)/(cos^2alpha cos^2beta)=tan^2beta-tan^2alpha

cos (alpha-beta) quad cos (alpha-beta), cos alpha1, cos betacos alpha, cos beta, 1] |

underset is f(alpha. beta)=cos^(2)+beta cos^(2)(alpha+beta)-2cos alpha cos beta cos(alpha+beta)