Home
Class 12
MATHS
f(x)={(e^x-1)/(log(1+2x)), \ x!=0K x=0a ...

`f(x)={(e^x-1)/(log(1+2x)), \ x!=0K x=0a t"x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(e^x-1)/(log(1+2x)),\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ 7,\ \ \ \ \ \ \ \ \ \ \ if\ x=0 at x=0

f(x)={(e^(x)-1)/(log(1+2x)),, if x!=0quad 7,quad if x=0 at x=0

If f(x)={xcosx+(log)_e((1-x)/(1+x)) x!=0 a; x=0; is odd, then a_______,

If the function f(x) defined by f(x)= (log(1+3x)-"log"(1-2x))/x , x!=0 and k , x=0. Find k.

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

if the function f(x) defined by f(x)= (log(1+a x)-"log"(1-b x))/x , if x!=0 and k if x=0 is continuous at x=0 , find k.

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

If the function f(x) defined by f(x)={(log(1+3x)-log(1-2x))/x\ \ \ ,\ \ \ x!=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k ,\ \ \ \ \ \ \ x=0 is continuous at x=0 , then k= (a) 1 (b) 5 (c) -1 (d) none of these

If the function f(x) defined by f(x)={(log(1+3x)-log(1-2x))/x\ \ \ ,\ \ \ x!=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ \ \ \ ,\ \ \ \ \ \ \ x=0 is continuous at x=0 , then k= (a) 1 (b) 5 (c) -1 (d) none of these