Home
Class 12
MATHS
If omega is cube root of unit, then valu...

If `omega` is cube root of unit, then value of determinant `|(omega^1,omega^4,omega^8),(omega^4,omega^8,1),(omega^8,1,omega^4)|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

If omega is a complex cube root of unit, then the value of the determinant |[1,omega,omega+1],[omega+1,1,omega],[omega,omega+1,1]|=

If omega is the cube root of unity then find the value of |[1,omega^(6),omega^(8)],[omega^(6),omega^(3),omega^(7)],[omega^(8),omega^(7),1]|

If omega is a complex cube root of unity then the value of the determinant |[1,omega,omega+1] , [omega+1,1,omega] , [omega, omega+1, 1]| is

If omega is an imaginary cube root of unity, then the value of |(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2))| is

If omega is cube root of unit,then value of | omega^(1)quad omega^(4)quad omega^(8) determinant det[[omega^(1),omega^(8),omega^(8)omega^(4),omega^(8),1omega^(8),1,omega^(4)]] is

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)