Home
Class 12
MATHS
tan^(-1)(3)/(2)+tan^(-1)(6)/(5)=pi-tan^(...

tan^(-1)(3)/(2)+tan^(-1)(6)/(5)=pi-tan^(-1)(27)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that tan^(-1)""(3)/(4)+tan^(-1)""(3)/(5)-tan^(-1)""(8)/(19)=(pi)/(4)

Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11) (ii) Prove that : sin^(-1).(3)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)

Prove that tan^(-1)""(1)/(2)+tan^(-1)""(1)/(5)+tan^(-1)""(1)/(8)=(pi)/(4)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that: tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=(pi)/(4)

tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)