Home
Class 11
MATHS
[" If "A,B,C" are angles of a triangle,t...

[" If "A,B,C" are angles of a triangle,then "2sin(A)/(2)cosec(B)/(2)],[sin(C)/(2)-sin A cot(B)/(2)-cos A" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are angles of a triangle,then 2sin((A)/(2))cos ec((B)/(2))sin((C)/(2))-sin A cot((B)/(2))-cos A is (a)independent of A,B,C (b) function of A,B(c) function of C(d) none of these

If A,B,C are angles of a triangle, then 2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

If A,B,C are angles of a triangle, then 2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

If A,B,C are angles of a triangle, then 2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then