Home
Class 11
MATHS
" Prove that "(n!)*(n+2)=[n!+(n+1)!]...

" Prove that "(n!)*(n+2)=[n!+(n+1)!]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that n! + (n + 1)! = n! (n + 2)

Prove that ""^(2n+1)P_(n-1)=((2n+1)!)/((n+2)!) and ""^(2n-1)P_n=((2n-1)!)/((n-1)!)

Prove that ((n+1)/(2))^(n) gt (n!)

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

Prove that n(n-1)(n-2) ...(n-r+1)=(n!)/((n-r)!).

For n in N , Prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

Prove that [(n+1)//2]^n >(n !)dot

Prove that [(n+1)//2]^n >(n !)dot

Prove that [n+1/2]^(n)>(n!)

Prove that ((n + 1)/(2))^(n) gt n!