Home
Class 12
MATHS
If A+B+C = pi and A, B, C are angle of /...

If `A+B+C = pi` and `A, B, C` are angle of `/_\ ` ; then show `sinA + sinB + sinC < (3 sqrt(3))/2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.

If A+B+C=pi , then sinA-sinB+sinC=

If A,B and C are the angle of a triangle show that (i) |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0. (ii) |{:(-1+CcosB,cosC+cosB,cosB),(cosC+cosA,-1+cosA,cosB),(-1+cosB,-1+cosA,-1):}|=0.

if A, B, C are acute positive angles, then : ((sinA + sinB)(sinA + sinC)(sinA + sinC))/(sinA sinB sinC) is :

If A, B and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then the triangle must be :