Home
Class 12
MATHS
Solve sinx+siny=sin(x+y)a n d|x|+|y|=1...

Solve `sinx+siny=sin(x+y)a n d|x|+|y|=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin x+sin y=sin(x+y) and |x|+|y|=1

Solve y'=sin^(2)(x-y+1)

Prove that, sinx.siny.sin(x-y) + siny.sinz.sin(y-z) + sinz.sinx.sin(z-x) + sin(x-y).sin(y-z).sin(z-x)=0

The value of sinx siny sin(x-y)+sinysinz sin(y-z) +sinz sinx sin(z-x)+sin(x-y)sin(y-z)sin(z-x), is

Prove that sinx siny sin(x-y)+sinysinzsin(y-z) +sinz sinx sin(z-x)+sin(x-y) sin(y -z) sin (z-x) = 0

prove (sinx-siny)/(cosx+cosy)=tan(x-y)/2

If sinx + siny = 1/2 and cosx + cosy =1 , then tan(x + y)=.......

Prove that sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((y+z)/2)sin((z+x)/2)

The value of the expression sinx+ siny + sinz where x, y, z are real numbers satisfying x+y+z= 180^@ is