Home
Class 12
MATHS
prove that tan^(-1)((1)/(7))+tan^(-1)((1...

prove that `tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((4)/(7))+tan^(-1)((1)/(7)) = tan^(-1)((7)/(9))

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))

tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=tan^(-1)((1)/(2))

Prove that tan^(-1)((2)/(7))+tan^(-1)((1)/(4))=cot^(-1)((26)/(15))

Prove that tan^(-1)((2)/(11))+tan^(-1)((7)/(24))=tan^(-1)((1)/(2))

Prove that: tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that: tan^(-1)((2)/(11))+tan^(-1)((7)/(24))=tan^(-1)((1)/(2))

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

2Tan^(-1)(1)/(3)+tan^(-1)((1)/(7))=