Home
Class 12
MATHS
If y=f(x)+(1)/(y), then (dy)/(dx)=(y^(2)...

If `y=f(x)+(1)/(y)`, then `(dy)/(dx)=(y^(2)f'(x))/(1+y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

If y=sqrt((1-x)/(1+x)), then ((1-x)/(y))^(2)(dy)/(dx)+y+2=

(dy)/(dx)=(x+y+1)/(2x+2y+3)

Let y=f (x) and x/y (dy)/(dx) =(3x ^(2)-y)/(2y-x^(2)),f(1)=1 then the possible value of 1/3 f(3) equals :

If y=f(cosx)" and "f'(x)=cos^(-1)x," then "(dy)/(dx)=

If y=x+(1)/(x+(1)/(x+(1)/(x+))), prove that (dy)/(dx)=(y)/(2y-x)

If y=x+(1)/(x+(1)/(x+(1)/(x+1))), prove that (dy)/(dx)=(y)/(2y-x)

If y=x+(1)/(x+(1)/((1)/(x+...))), prove that(dy)/(dx)=(y)/(2y-x)

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)