Home
Class 12
MATHS
tan^(-1){sin(-(pi)/(2))}" is equal to "...

tan^(-1){sin(-(pi)/(2))}" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan[2" tan"^(-1)(1)/(5)-(pi)/(4)] is equal to

The value of tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2)) is equal to (pi)/(4)b*(5 pi)/(12)c*(3 pi)/(4)d.(13 pi)/(12)

tan[cos ^(-1){sin(2tan^(-1)2)}] is equal to

tan^(-1)[sin(-pi/2)]=pi/4 .

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

The value of tan (2 tan^(-1). (1)/(5) - (pi)/(4) ) is equal to

Find the value of : tan ^(-1) sin (-(pi)/(2))

If A+B+C=pi and sin(A+(C)/(2))=k sin((C)/(2)), then tan((A)/(2))*tan((B)/(2)) is equal to

The value of (1)/(sqrt(2))"sin"(pi)/(6)"cos"(pi)/(4)-"cot"(pi)/(3)"sec"(pi)/(6)+(5"tan"(pi)/(4))/("12sin"(pi)/(2)) is equal to