Home
Class 9
MATHS
" If "abc=1," prove that ":(1)/(1+a+b^(-...

" If "abc=1," prove that ":(1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+e+a^(-1))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If abc=1, show that (1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1))=1

If abc=1, then ((1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1)))=? a.0 b.ab c.1 d.(1)/(ab)

If abc=1, show that (1)/(1+a+b^(-1))+(1)/(1+b+c)+(1)/(1+c+a^(-1))=1

Prove that (a+b+c)/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

if abc =2 then the value of (1)/(1+a+2b^(-1))+(1)/(1+(b)/(2)+c^(-1))+(1)/(1+a^(-1)+c)=

( Prove that: )/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

If a+b+c=1, then prove that (8)/(27abc)>{(1)/(a)-1}{(1)/(b)-1}{(1)/(c)-1}>8

Prove that 1/(a(a-b)(a-c))+1/(b(b-c)(b-a))+1/(c(c-a)(c-b))=1/(abc)