Home
Class 12
MATHS
[" Let "F(x)=f(x)+f((1)/(x))," where "f(...

[" Let "F(x)=f(x)+f((1)/(x))," where "f(x)=int_(1)^(x)(log t)/(1+t)dt" .Then "F(e)" is equal to : "],[[" (A) "(1)/(2)," (B) "0," (C) "1," (D) "2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

Let F(x)= f(x) + f(1/x) , where f(x)= int_(1)^(x) (ln t)/(1+t)dt , then F(e)=

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let F (x) = f(x) + f ((1)/(x)), where f (x) = int _(1) ^(x ) (log t)/(1+t) dt. Then F (e) equals

Let F(x) = f(x) + f(1/x) , where , f(x) = int_1^x (log t)/(1 + t) dt . Then F(e ) equals :

Let F(x)=f(x)+f((1)/(x)), where f(x)=int_(t)^(x)(log t)/(1+t)dt (1) (1)/(2)(2)0(3)1(4)2

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to