Home
Class 11
MATHS
Find the values of x in (-pi,pi) which s...

Find the values of `x in (-pi,pi)` which satisfy the equation `8^(1+|cosx|+|cos^2x|+|cos^(2x|+))=4^3`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Let Ssub(0,pi) denote the set of values of x satisfying the equation 8^1+|cos x|+cos^2x+|cos^(3x| tooo)=4^3 . Then, S= {pi//3} b. {pi//3,""2pi//3} c. {-pi//3,""2pi//3} d. {pi//3,""2pi//3}

The integral Value of x in(-pi,pi) satisfying the equation |x^(2)-1+cos x|=|x^(2)-1|+|cos x| can be

Knowledge Check

  • The value of x in (0,pi/2) satisfying the equation sin x cos x =1/4 is

    A
    `pi/6`
    B
    `pi/3`
    C
    `pi/8`
    D
    `pi/12`
  • For 0 lt x lt pi the values of x which satisfy then relation 9^(1+|cos x|+ |cos^(2) x| + | cos^(3)x| +…) upto oo =3^(4) are given by

    A
    `(pi)/(3), (2pi)/(3)`
    B
    `(pi)/(3),(3pi)/(4)`
    C
    `(pi)/(4),(3pi)/(4)`
    D
    `(pi),(3),(pi)/(4)`
  • Let S sub (-pi, pi) denote the set of values of x satisfying the equation 8^(1 + |cos x | +cos^(2) x + |cos^(3) x|+..."to"oo) = 4^(3) then S =

    A
    `{(pi)/(3)}`
    B
    `(-(pi)/(3), - (2pi)/(3))`
    C
    `(-(pi)/(3), (2pi)/(3))`
    D
    `((pi)/(3), (2pi)/(3))`
  • Similar Questions

    Explore conceptually related problems

    Find the number of values of x in [-pi/4, pi/4] satisfying the equation sin^(2) (2 cos^(-1) (tan x))=1

    Find the values of x in the interval [0,\ 2pi] which satisfy the inequality : 3\ |sinx-1|>=3+4cos^2x .

    Find the values of x in the interval [0,2pi] which satisfy the inequality: 3|2sinx-1|ge3+4cos^(2)x

    Number of values of x in [0, 2pi] and satisfying the equation cos x cos2x cos3x=1//4 is :

    The number of values of x in [0,2pi] satisfying the equation 3cos2x-10cosx+7=0 is