Home
Class 11
MATHS
Find the values of x in (-pi,pi) which s...

Find the values of `x in (-pi,pi)` which satisfy the equation `8^(1+|cosx|+|cos^2x|+|cos^(2x|+))=4^3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

For 0 lt x lt pi the values of x which satisfy then relation 9^(1+|cos x|+ |cos^(2) x| + | cos^(3)x| +…) upto oo =3^(4) are given by

Let Ssub(0,pi) denote the set of values of x satisfying the equation 8^1+|cos x|+cos^2x+|cos^(3x| tooo)=4^3 . Then, S= {pi//3} b. {pi//3,""2pi//3} c. {-pi//3,""2pi//3} d. {pi//3,""2pi//3}

The integral Value of x in(-pi,pi) satisfying the equation |x^(2)-1+cos x|=|x^(2)-1|+|cos x| can be

Find the number of values of x in [-pi/4, pi/4] satisfying the equation sin^(2) (2 cos^(-1) (tan x))=1

The number of values of x in [0,2pi] satisfying the equation 3cos2x-10cosx+7=0 is

Find the values of x in the interval [0,\ 2pi] which satisfy the inequality : 3\ |sinx-1|>=3+4cos^2x .

Find the values of x in the interval [0,2pi] which satisfy the inequality: 3|2sinx-1|ge3+4cos^(2)x