Home
Class 11
MATHS
If cos3theta=cos3alpha, then the value o...

If `cos3theta=cos3alpha,` then the value of `sintheta` can be given by `+-sinalpha` (b) `sin(pi/3+-alpha)` `sin((2pi)/3+alpha)` (d) `sin((2pi)/3-alpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(2)alpha+sin((pi)/(3)-alpha)sin((pi)/(3)+alpha) is

(1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3)+alpha)] is equal to

sin ^ (3) ((2 pi) / (3) + alpha) = (1) / (4) (3sin ((2 pi) / (3) + alpha) -sin (2 pi + 3 alpha)

find the value of the expression 3[sin^(4)(3(pi)/(2)-alpha)+sin^(4)(3 pi+alpha)]-2[sin^(6)((pi)/(2)+alpha)+sin^(6)(5 pi-alpha)]

Find the value of the expression 3[sin^(4)((3pi)/(2)-alpha)+sin^(4)(3pi+alpha)]-2[sin^(6)((pi)/(2)+alpha)+sin^(6)(5pi-alpha)] .

(cos alpha + (cos ((2 pi) / (3) + alpha)) + cos ((4 pi) / (3) + alpha))

sin alpha+sin(alpha+((2pi)/3))+sin(alpha+((4pi)/3))=0

Show that 4sin alpha*sin(alpha+(pi)/(3))sin(alpha+2(pi)/(3))=sin3 alpha

prove that 4sin alpha*sin(alpha+(pi)/(3))*sin(alpha+(2 pi)/(3))=sin3 alpha