Home
Class 11
MATHS
e^(|sinx|)+e^(-|sinx|)+4a=0 will have ex...

`e^(|sinx|)+e^(-|sinx|)+4a=0` will have exactly four different solutions in `[0,2pi]` if. `a in R` (b) `a in [-3/4,-1/4]` `a in [(-1-e^2)/(4e),oo]` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(sinx)-e^(-sinx)-4=0 , then the number of real values of x is

e^(4x)-e^(3x)-4e^(2x)-e^(x)+1=0 then the number of solution of equation is

int_0^oo (xlogx)/(1+x^2)^2dx= (A) e (B) 1 (C) 0 (D) none of these

786-:24xx?=6.55(a)0.2(b)0.4(c)4(d)5(e) None of these

If e^(sin x)-e^(-sin x)-4=0, then x=0 (b) sin^(-1){(log)_(e)(2+sqrt(5))}(c)1(d) none of these

Equation x^(2)e^(x)=k has Three real solution if k in(0,4e^(-2)) Two real solutions if k=4e^(-2) Only one real solution if k in(4e^(-2),oo) only one real solution if k in(-oo,0)

(3.5xx1.4)/(0.7)=?( a) 0.7(b)2.4(c)3.5(d)7.1 (e) None of these