Home
Class 11
MATHS
If both the distinct roots of the equati...

If both the distinct roots of the equation `|sinx|^2+|sinx|+b=0in[0,pi]` are real, then the values of `b` are `[-2,0]` (b) `(-2,0)` `[-2,0]` (d) `non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :

If a and b(!=0) are the roots of the equation x^(2)+ax+b=0 then the least value of x^(2)+ax+b is

If the equation x^2-b x+1=0 does not possess real roots, then -3 2 (d) b<-2

If e^(sinx)-e^(-sinx)-4=0 , then the number of real values of x is