Home
Class 11
MATHS
Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c)...

Prove that `((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A`

Text Solution

Verified by Experts

`((a + b + c) (b + c -a) (c + a - b) (a + b -c))/(4b^(2) c^(2))`
`= (2s 2 (s - a) 2 (s -b) 2 (s -c))/(4b^(2) c^(2))`
`= (4 Delta ^(2))/(b^(2) c^(2))`
`= (4)/(b^(2) c^(2)) ((1)/(2) bc sin A)^(2) = sin^(2) A`
Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC, prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(Ab^(2)c^(2))=sin^(2)A

Prove that (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(c sin(A-B))/(a^(2)-b^(2))

Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)+c^(2)) .

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

If a^(2),b^(2) and c^(2) are in AP then prove that (a)/(b+c),(b)/(c+a) and (c)/(a+b) are also in A.P.

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

If (b^2+c^2-a^2)/(2b c),(c^2+a^2-b^2)/(2c a),(a^2+b^2-c^2)/(2a b) are in A.P. and a+b+c=0 then prove that a(b+c-a),b(c+a-b),c(a+b-c) are in A.P.

Prove that (b^(2)+c^(2))/(b+c)+(c^(2)+a^(2))/(c+a)+(a^(2)+b^(2))/(a+b)>a+b+c