Home
Class 11
MATHS
If cosalpha+cosbeta=0=sinalpha+sinbeta, ...

If `cosalpha+cosbeta=0=sinalpha+sinbeta,` then `cos2alpha+cos2beta` is equal to (a)`-2"sin"(alpha+beta)` (b) `-2cos(alpha+beta)` (c)`2"sin"(alpha+beta)` (d) `2"cos"(alpha+beta)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha+cos beta=0=sin alpha+sinbeta, then cos2alpha+cos 2beta=

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

If cos alpha+cos beta=0=sin alpha+sin beta. Prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta