Home
Class 10
MATHS
Let x=root(3)(2+sqrt5)+root(3)(2-sqrt5),...

Let `x=root(3)(2+sqrt5)+root(3)(2-sqrt5)`, then `x^3+3x` is equal to (i)`1` (ii)`2` (iii)`3` (iv)`4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log_(2)(root(3)(2+sqrt(5))+root(3)(2-sqrt(5))) is equal to

Let x=(2+sqrt(5))^((1)/(3))+(2-sqrt(5))^((1)/(3)),x^(3)+3x is equal to

If x=root(3)(7+5sqrt(2))-(1)/(root(3)(7+5sqrt(2))), then the value of x^(3)+3x-14 is equal to 1(b)0(c)2 (d) 4

If f(x)=((3x+1)(2sqrt(x)-1))/(sqrt(x)) , then f'(1) is equal to (i) 5 (ii) -5 (iii) 6 (iv) (11)/(2)

If x=root(3)(7+5sqrt(2))-(1)/(root(3)(7+5sqrt(2))), then the value of x^(3)+3x-14 is equal to 1 b.0 c.2 d.4

2sqrt(3)x^2 -5x+sqrt(3) .Find roots.

In the expansion of (sqrt(x^(5))+(3)/(sqrt(x^(3))))^(6) coefficient of x^(3) is (i)0(ii)120(iii)420(iv)540