Home
Class 11
MATHS
The equation sin^4x-2cos^2x+a^2=0 can be...

The equation `sin^4x-2cos^2x+a^2=0` can be solved if `-sqrt(3)lt=alt=sqrt(3)` (b) `sqrt(2)lt=alt=""sqrt(2)` `-""1lt=alt=a` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x-sqrt(1-|x|) lt 0 .

Solve sqrt(x-1)/(x-2) lt 0

Solve the equation sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4).

Solve the equation sqrt(3)cos x+sin x=sqrt(2)

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Solve for x if sqrt(x^(2)-x) lt (x-1)

Solve (x^2-4)sqrt(x^2 -1) lt 0.

Discuss the extremum of f(x)={|x^2-2|,-1lt=x

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these