Home
Class 11
MATHS
In A B C , the median A D divides /B A ...

In ` A B C ,` the median `A D` divides `/_B A C` such that `/_B A D :/_C A D=2:1` . Then `cos(A/3)` is equal to `(sinB)/(2sinC)` (b) `(sinC)/(2sinB)` `(2sinB)/(sinC)` (d) `non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(B-C)/(sinB*sinC)+sin(C-A)/(sinC*sinA)+(sin(A-B))/(sin A*sin B)=0

In DeltaABC , prove that: (a^(2)sin(B-C))/(sinA) + (b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to-

In triangleABC, a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

Prove that: (sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))=(sinA)/(sinB)

If (sinA+sinB+sinC)^(2)=sin^(2)A+sin^(2)B+sin^(2)C , then which one is true?

In !ABC , if (sinA)/(csinB)+(sinB)/c+sinC)/b=c/(ab)+b/(ac)+a/(bc) then the value of A , is