Home
Class 12
MATHS
lim(x->pi)([sinx]+x) is (A) pi (B) 1+pi...

`lim_(x->pi)([sinx]+x)` is (A) `pi` (B) `1+pi` (C) `pi-1` (D) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->(pi/2)) (1-sinx)tanx =

lim_(x->(pi/2)) (1-sinx)tanx =

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

Lim_(x to pi)(1+sin x)/(x - pi)

Evaluate lim_(x rarr0)(tan(pi sin^(2)x)+(|x|-sin(x[x]))^(2))/(x^(2)) where [*]=G.I.F(A)pi+1(B)pi(C)-1 (D) Does not exist

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

lim_ (x rarr pi) ((sin (pi-x)) / (pi (pi-x)))

lim_(x rarrpi)sinx/(pi-x) = …. .

lim_(x rarr -pi) |x+pi|/sinx is

lim_(x->1)(1-x^2)/(sin2pix) is equal to (a) 1/(2pi) (b) -1/pi (c) (-2)/pi (d) none of these