Home
Class 11
MATHS
In A B C ,ifa=10a n dbcotB+cotC=2(r+R) ...

In ` A B C ,ifa=10a n dbcotB+cotC=2(r+R)` then the maximum area of ` A B C` will be 50 (b) `sqrt(50)` (c) 25 (d) 5

Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC , if a = 10 and b cot B + c cot C = 2(r + R) then the maximum area of DeltaABC will be

If a,b,c in R^(+) such that a+b+c=21 then the maximum value of a^(2)b^(3)c^(2) is equal to

Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D are mutually perpendicular. Let the area of triangles A B C ,A C Da n dA D B be 3, 4 and 5sq. units, respectively. Then the area of triangle B C D is 5sqrt(2) b. 5 c. (sqrt(5))/2 d. 5/2

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

If A D is median of A B C and P is a point on A C such that a r\ ( A D P):\ a r\ ( A B D)=2:3,\ then a r( P D C): a r\ ( A B C) is 1:5 (b) 1:5 (c) 1:6 (d) 3:5

2, 5, 10, 17, 26, 37; 50, 64 (a) 50 (b) 26 (c) 37 (d) 64

2, 5, 10, 50, 500, 5000 (a) 0 (b) 5 (c) 10 (d) 5000

If the circumference of a circle is decreased by 50% then the percentage of decrease in its area is (a) 25 (b) 50 (c) 60 (d) 75

If a,b,c,in R^(+) , such that a+b+c=18 , then the maximum value of a^2,b^3,c^4 is equal to

If cotA+cotB+cotC = k(1/x^2+1/y^2+1/z^2) then the value of k is (A) R^2 (B) 2R (C) /_\ (D) a^2+b^2+c^2